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expectation value at least up to order (g2N)2. This does not happen generally for a generic

non-BPS Wilson loop whose expectation value is UV divergent. For this reason we call this

a near-BPS Wilson loop. We derive the general form of the boundary condition satisfied

by the dual string worldsheet and find that it is deformed. Finiteness of the expectation

value of the Wilson loop fixes the boundary condition to be one which is characterized

by the vielbein of the deformed supergravity metric. The Wilson loop operators provide

natural candidates as dual descriptions to some of the existing D-brane configurations in

the Lunin-Maldacena background. We also construct the string dual configuration for a

near-1/4 BPS circular Wilson loop operator. The string lies on a deformed three-sphere

instead of a two-sphere as in the undeformed case. The expectation value of the Wilson loop

operator is computed using the AdS/CFT correspondence and is found to be independent

of the deformation. We conjecture that the exact expectation value of the Wilson loop is

given by the same matrix model as in the undeformed case.
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1. Introduction

The AdS/CFT correspondence states the equivalence of string theory on AdS5 ×S5 to the

N = 4 supersymmetric Yang-Mills [1 – 4]. According to this correspondence, there exists a

map between gauge invariant operators in the field theory and states in the string theory.

The correspondence is well understood for the case of half BPS local operators where the

dual string states are D-branes in the bulk [5, 6]. The Wilson loop operator is another

important class of gauge invariant observable which is non-local. The Wilson loop operator

in the Euclidean N = 4 SYM theory is given by [7]

WR[C] =
1

N
TrR P exp

(∮

C
dτ(iAµẋµ + ϕiẏ

i)

)

, (1.1)

where Aµ are the gauge fields and ϕi are the six real scalars. The loop C is parametrized by

the variables (xµ(τ), yi(τ)), where (xµ(τ)) determines the actual loop in four dimensions,

and (yi(τ)) can be thought of as the extra six coordinates of the ten-dimensional N = 1

super Yang-Mills theory, of which theory is the dimensionally reduced version. R is the

representation of the gauge group G. In this paper we will be interested in the case
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G = U(N). In (1.1), the coupling to the gauge fields and the scalar fields is controlled by

ẋµ and ẏi. In particular, Wilson loop operator satisfying the constraint

ẋ2 = ẏ2 (1.2)

is locally BPS. Moreover it has a finite expectation value.

In the AdS/CFT correspondence, BPS Wilson loop operators in the fundamental rep-

resentation is dual to a fundamental string worldsheet ending on the AdS5 boundary [7, 8].

Recently, it has been realized that Wilson loop in the symmetric or antisymmetric repre-

sentation can be described in terms of a single D3-brane or D5-brane with worldvolume

RR flux. See [9 – 15] for the 1/2 BPS case and [16] for the D3-brane dual for 1/4 BPS

Wilson in symmetric representation. More generally, it has been shown in [11, 14] that

half BPS Wilson loop operators in general higher rank representations can be described in

terms of a certain array of D3 branes or D5-branes. Analogous to the approach of [17], the

supergravity description for certain half BPS Wilson loop has also been obtained [18 – 21].

The goal of this paper is to try to extend some of these results to theories with less

supersymmetries. We will consider an N = 1 supersymmetric gauge theory obtained by a

marginal β-deformation of the N = 4 SYM. The theory is described by the superpotential

ihTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) , (1.3)

where Φi are the three N = 1 chiral superfields. The theory is conformal provided a

condition on the parameters h, β and the gauge coupling τ is satisfied. The resulting

theory preserves N = 1 superconformal symmetry and has a global U(1)×U(1) symmetry

U(1)1 : (Φ1,Φ2,Φ3) → (Φ1, e
iδ1Φ2, e

−iδ1Φ3)

U(1)2 : (Φ1,Φ2,Φ3) → (e−iδ2Φ1, e
iδ2Φ2,Φ3). (1.4)

The U(1)R symmetry acts as

U(1)R : (Φ1,Φ2,Φ3) → eiδ(Φ1,Φ2,Φ3) (1.5)

under a rotation θ → e3iδ/2θ. All together, the N = 1 β-deformed SYM theory is invariant

under a U(1)3 symmetry. It’s action on the scalar components is

Φk → eiδk Φk, for arbitrary constants δk, (k = 1, 2, 3). (1.6)

Here we have used the same notation Φk to denote both the lowest component of the

superfield as well as the superfield itself.

The supergravity dual of the β-deformed SYM was found by Lunin and Maldacena

in [26]. The Lunin-Maldacena background can be obtained from the AdS5×S5 via a series

of T-duality transformation, shift and T-duality transformation acting on the five-sphere

(S-duality is also needed if β is complex). We will look at the real β case. The supergravity

description is valid in the limit of small curvature R = (4πgsN)1/4 ≫ 1 and

Rβ ≪ 1, (1.7)
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with

R2β := γ̂ fixed. (1.8)

Aspects of the supergravity duals of Wilson loops in the β-deformed SYM theory has

been studied before [22, 23].1 However the form of the field theory operators that are

in dual with the supergravity configurations has not been identified. We note that the

Wilson loop operator (1.1), (1.2) is non-BPS since the gauge bosons and the scalars are in

different N = 1 supersymmetry multiplets and so their supersymmetry variations cannot

cancel out each other. Conformal supersymmetry also does not mix these multiplets.2 One

can check that even by allowing general fermion couping, it is not possible to construct

a supersymmetric Wilson loop. It thus appears impossible to construct a Wilson loop

operator which respects some of the N = 1 superconformal symmetries of the β-deformed

SYM.

In this paper we point out that although the Wilson loop operator (1.1), (1.2) is non-

BPS,3 it shares a distinguished property of the locally BPS Wilson loop operator in the

N = 4 theory - namely, it has a finite vev. This is not true for a generic non-BPS Wilson

loop. To distinguish it from a generic non BPS loop, we call the operator (1.1), (1.2) a

near BPS Wilson loop operator. An analogous example is the BMN operator in the N = 4

SYM theory. The BMN operator is not a BPS operator, but it has a finite anomalous

dimensions in a particular double scaling limit [25]. This operator is very interesting and

have been studied extensively. We stress that the near BPS Wilson loop operator is not a

deformation of a BPS one. The use of “near” is to emphasis that although it is not BPS,

but it has finite expectation value just as a BPS Wilson loop operator in the N = 4 theory

does.

We propose that dual operators for the D-brane configurations in [23] are given by

the near BPS Wilson loop operators (1.1), (1.2) whose path is a circle in the x-space

and a point in the transverse space. When β ≈ 0, an approximate half of the associated

N = 4 supersymmetry is preserved. And one may call this Wilson loop operator near-

half BPS. We also consider the near-1/4 BPS case and construct the dual microscopic

string description. The Wilson loop’s expectation value is computed using the AdS/CFT

correspondence and, as expected, it is finite. Unlike the near-1/2 BPS Wilson loops where

the authors find that precisely the same undeformed ansatz has to be taken to construct

the desired dual D-branes configurations, here we find that one has to employ a modified

ansatz to construct the dual string minimal surface.

1The construction of [23] utilizes some interesting properties found for giant gravitons in the Lunin-

Maldacena background [24]
2We note, however, that the Wilson loop operator (1.1) is half BPS if the curve is taken to be a lightlike

line (possible in the Lorentzian case) and with ẏi = 0. This operator has no coupling to the scalar fields and

is not sensitive to the deformation. In this paper we focus in the case where the Wilson loop has coupling

to the scalar fields since we are interested in the effects of the β-deformation. We thanks Nadav Drukker

for a discussion on this.
3non-BPS in the local sense. For simplicity, unless otherwise stated, we will omit “local” in the following.

The meaning should be clear from the context.
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The paper organized as follows. In section 2, we review the Lunin-Maldacena back-

ground in its original form where the deformed sphere metric is written in the angular

coordinate system. Since the 1/4 BPS Wilson loop necessarily involves a non-trivial cou-

pling to the six real scalars field, for the purpose of using AdS/CFT, it is more convenient

to re-express the deformed five-sphere metric and the B-field in terms of the embedding R6

coordinates. We then point out some very remarkable properties satisfied by the deformed

metric and the B-field, which will be needed later. In section 3 we review the argument for

the constraint (1.2) on the form of the BPS Wilson loop and show that similar field theory

arguments lead to the same form for the Wilson loop operator. We also derive the gen-

eral form of the modified boundary condition for the dual string in the Lunin-Maldacena

background. Finally, we analyze the boundary contribution arising from the Legendre

transformation of the action and show that the finiteness of the Wilson loop vev fixes the

form of the string boundary condition. We finish, by giving in section 4 the dual string

solution in the Lunin-Maldacena background of a near-1/4 BPS circular Wilson loop. Un-

like the undeformed case where the string surface is confined on a S2 in the five-sphere,

the string now extends on a deformed S̃3. The expectation value of the Wilson loop is

computed and found to be undeformed. We conjecture the exact expectation value of the

Wilson loop is given by the same matrix model as in the undeformed case. A number of

appendices are included. In appendix A, we derive the form of the Wilson loop in the large

N limit using the phase factor associated with the infinitely massive quark obtained from

the breaking U(N + 1) → U(N) × U(1). In appendix B, we collect some of the formula

of the deformed metric expressed in the Cartesian coordinates. The Hamiltonian-Jacobi

equation in the presence of B-field is derived in appendix C. In appendix D we show that

the 1-loop corrected scalar propagator and gauge boson propagator in the Feynman gauge

remains equal. Using this result, we show that our near BPS Wilson loop operator is free

from UV divergences up to order (g2N)2.

2. The Lunin-Maldacena background

The type IIB supergravity solution that is dual to the β-deformation of N = 4 super Yang

Mills was found in [26]. In the string frame it is:

ds2 = R2

[

ds2
AdS5

+
∑

i

(

dµ2
i + Gµ2

i dφ2
i

)

+ γ̂2Gµ2
1µ

2
2µ

2
3

(

∑

i

dφi

)2

]

, (2.1a)

e2φ = gsG , (2.1b)

B = R2γ̂ G (µ2
1µ

2
2dφ1 ∧ dφ2 + µ2

2µ
2
3dφ2 ∧ dφ3 + µ2

3µ
2
1dφ3 ∧ dφ1) , (2.1c)

C2 = −4R2γ̂ ω1 ∧ (dφ1 + dφ2 + dφ3) , (2.1d)

C4 = ω4 + 4R4G ω1 ∧ dφ1 ∧ dφ2 ∧ dφ3 , (2.1e)

where R4 = 4πgsN (in units where α′ = 1),

G−1 = 1 + γ̂2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

3µ
2
1) . (2.2)
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The parameter γ̂ appearing in (2.1) is related to the deformation parameter β of the gauge

theory by:

γ̂ = R2 β . (2.3)

The definition of ω1 and ω4 can be found in [26].

The background has the U(1)3 symmetry

φk → eiδkφk, for arbitrary constant δk, (k = 1, 2, 3). (2.4)

This is in correspondence with the U(1)3 symmetry (1.6) of the β-deformed SYM theory.

2.1 Properties of the deformed metric and B-field

It is convenient to introduce the Cartesian coordinates where the deformed S̃5 is embedded

Y 1 = Y θ1 = Y µ1 cos φ1, Y 4 = Y θ4 = Y µ1 sin φ1,

Y 2 = Y θ2 = Y µ2 cos φ2, Y 5 = Y θ5 = Y µ2 sin φ2, (2.5)

Y 3 = Y θ3 = Y µ3 cos φ3, Y 6 = Y θ6 = Y µ3 sin φ3.

Here Y 2 = (Y i)2 and (θi)2 = 1. With respect to this basis, the symmetry (2.4) is translated

to

Y1+iY4 → eiδ1(Y1+iY4), Y2+iY5 → eiδ2(Y2+iY5), Y3+iY6 → eiδ3(Y3+iY6). (2.6)

The metric (2.1a) becomes

ds2 =
R2

Y 2





3
∑

µ=0

dXµdXµ + dY 2 + Y 2dΩ̃2
5



 =
R2

Y 2





3
∑

µ=0

dXµdXµ +
6

∑

i=1

GijdY idY j



 ,

(2.7)

where Gij is the embedding metric of the deformed S̃5. The diagonal terms of the metric

are

Gii =
1

Y 2
(cos2 φi + GMi sin2 φi), Gi+3 i+3 =

1

Y 2
(sin2 φi + GMi cos2 φi), i = 1, 2, 3,(2.8)

where, for convenience, we have defined the new quantities

M1 = 1 + γ̂2µ2
2µ

2
3, M2 = 1 + γ̂2µ2

1µ
2
3, M3 = 1 + γ̂2µ2

1µ
2
2. (2.9)

The non-diagonal elements are

G12 =
γ̂2

Y 2
Gµ1µ2µ

2
3 sin φ1 sin φ2, G13 =

γ̂2

Y 2
Gµ1µ

2
2µ3 sin φ1 sin φ3,

G15 = − γ̂2

Y 2
Gµ1µ2µ

2
3 sin φ1 cos φ2, G16 = − γ̂2

Y 2
Gµ1µ

2
2µ3 sin φ1 cos φ3, (2.10)

G23 =
γ̂2

Y 2
Gµ2

1µ2µ3 sin φ2 sin φ3, G26 = − γ̂2

Y 2
Gµ2

1µ2µ3 sin φ2 cos φ3.
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The elements G45, G46, G24, G34, G56, G35 differ respectively from G12, G13, G15, G16,

G23, G26 by switching all the cos and sin in each case. The remaining elements are

G14 =
1

2Y 2
(1−GM1) sin 2φ1, G25 =

1

2Y 2
(1−GM2) sin 2φ2, G36 =

1

2Y 2
(1−GM3) sin 2φ3.

(2.11)

In the above we have given the metric elements as a function of the angles. For convenience,

we have also recorded in the appendix B the expressions of the metric elements as a function

of Y i.

Even if as expected this deformed metric is not conformally flat, it displays some

remarkable symmetries. One can check that the following identity is satisfied

Y iGijY
j = 1, (2.12)

which leads to

θigijθ
j = 1, (2.13)

where we have defined

gij := Y 2Gij . (2.14)

The gij is finite at the boundary as can be easily seen from (2.8), (2.10), (2.11). Another

interesting property of the deformed metric is that

θi(∂αgij)θ
j = 0, (2.15)

where ∂α is an arbitrary derivative. Also we have

(∂αθi)gijθ
j = 0, (2.16)

which follows immediately from (2.13), (2.15).

The B-field also satisfies an interesting identity. Writing the B-field as

B = R2γ̂ G (b1 + b2 + b3), (2.17)

where

bm :=
1

2
ǫmnkµ

2
nµ

2
kdφn ∧ dφk, m, n, k = 1, 2, 3. (2.18)

It is

b3 = Y −4(Y 4Y 5dY 1 ∧ dY 2 + Y 1Y 2dY 4 ∧ dY 5 + Y 1Y 5dY 2 ∧ dY 4 − Y 2Y 4dY 1 ∧ dY 5),

b2 = −Y −4(Y 4Y 6dY 1 ∧ dY 3 + Y 1Y 3dY 4 ∧ dY 6 + Y 1Y 6dY 3 ∧ dY 4 − Y 3Y 4dY 1 ∧ dY 6),

b1 = Y −4(Y 5Y 6dY 2 ∧ dY 3 + Y 2Y 3dY 5 ∧ dY 6 + Y 2Y 6dY 3 ∧ dY 5 − Y 3Y 5dY 2 ∧ dY 6).

(2.19)

It is easy to check that the B-field satisfies the following identity

Bik∂σY kY i = 0. (2.20)

– 6 –
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In fact the stronger form

bnik∂σY kY i = 0. (2.21)

holds for the individual pieces composing the B-field.

In our following analysis, we will use the properties (2.13), (2.16), (2.20) of the metric

and the B-field to study the deformed boundary condition for the macroscopic string ending

on the Wilson loop. It will be interesting to see in which calculation the results (2.21) for

the B-field will be needed.

3. Near-BPS Wilson loop and twisted boundary condition

3.1 Form of the Wilson loop operator

We start out by recalling the arguments for the form of the Wilson loop operator (1.1)

and the constraint (1.2) in the original undeformed N = 4 case. Firstly, one can examine

the unbroken supersymmetry on the Wilson loop operators [27 – 29]. The Wilson loop

operator is locally supersymmetric if the constraint (1.2) is satisfied. A second way is from

perturbation theory. One finds that the above constraint must be satisfied in order for

the UV-divergence to cancel out in the expectation value of W . This is easy to check in

the leading order in g2N := λ and can be extended to arbitrary higher orders in λ using

arguments based on the present SO(6) symmetry [27]. Another way to derive the Wilson

loop operator is by decomposing the gauge group U(N +1) → U(N)×U(1) in order to use

the W-bosons, that appear from this breaking [7, 27]. Finally, the constraint can also be

understood from the dual supergravity point of view [27]. Imposing appropriate boundary

conditions and then using the Hamilton-Jacobi equation for the minimal surface, one find

that only if the constraint (1.2) is satisfied can the minimal surface ends on the boundary

of AdS5 and giving rises to a finite vev for the Wilson loop. We remark that the first

two methods work for any gauge group and any representation, while modifications will

be needed in order to generalize the third and the fourth methods to other gauge group or

higher representation.

In the β-deformed theory, as we explained in the introduction, it appears impossible to

construct a supersymmetric Wilson loop. On the other hand, supergravity configurations

have been constructed whose dual operators would have finite vev. We propose to study

this form of the Wilson loop operator (1.1), (1.2) and that it provides the dual of the the

D-brane configurations constructed in [23].4

We first give field theory arguments for the choice of this operator in the beta-deformed

theories. First, as in the undeformed case, one may define the Wilson loop as the phase fac-

tor associated with the W-boson probe arising from the breaking U(N +1) → U(N)×U(1).

In appendix A, we calculate the deformed N = 4 Lagrangian arising from this decomposi-

tion. The action looks quite complicated at finite N . However all the β-dependence drops

out in the large N limit of the classical action and the resulting operator takes the form

of (1.1), (1.2). We propose this form of the Wilson loop for any N .

4In this case, the loop is taken to be a circle in the x-space and a point in the transverse space yi.

– 7 –
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Another field theory reason is that if ones tries to derive the constraint in the β-

deformed theory using perturbation methods, the result at the leading order of ’t Hooft

coupling λ is the same as in the undeformed theory since the propagators of the β-deformed

theory are not modified. Hence the UV pole cancels if the condition (1.2) is satisfied, as in

the undeformed case. At higher orders of λ, the β-deformation breaks the SO(6) invariance

of the scalars and the simple argument of the undeformed case does not hold and anymore.

However one can check explicitly the gauge boson and scalar propagator remains equal up

to order λ. As a result, the UV divergence cancels out explicitly up to order λ2 if the

constraint (1.2) holds. The details is presented in the appendix D. We conjecture that the

UV divergences cancel exactly in the β-deformed SYM theory. A better understanding of

perturbative properties of the beta-deformed theory would give an answer to this problem.

This result is quite remarkable since although the SO(6) symmetry is broken by the

β-deformation, a SO(6) invariant constraint is constructed. The same constraint is also

obtained from the SUGRA analysis performed in the next subsections and give support to

the validity of this constraint (1.2) and the form (1.1) of the Wilson loop operator.

We next turn to the supergravity picture for support of the form of the constraint

(1.2) and the conjecture on the UV finiteness of the Wilson loop. Before we do this, a a

comment is in order. In order for the Wilson loop operator to respect the U(1)3 symmetry

(1.6) of the β-deformed SYM, one need to assign a corresponding rotation

y1 + iy4 → eiδ1(y1 + iy4), y2 + iy5 → eiδ1(y2 + iy5), y3 + iy6 → eiδ1(y3 + iy6), (3.1)

to the loop variables yi. Here we have used the identification of the scalar fields (A.8).

The transformation properties (3.1) and (2.6) leads one to associate yi with Yi. This fact

is important as, given a specific configuration of the loop variables yi in the field theory,

it tells which Yi should be activated for the dual string configuration in supergravity. An

example will be shown in section 4.

3.2 Deformed boundary conditions

Since the constraint (1.2) is closely related with the boundary conditions of the dual string

we will use it to analyze how these boundary conditions are modified and we will see that

they are modified for the directions in the S̃5. We will first derive the most general form of

the boundary condition for the string minimal surface. This is given in terms of an arbitrary

matrix Λk
m. Then we show that the field theory constraint is obtained if this matrix is

given by the vielbein of the deformed metric. We also show that the UV divergence in the

supergravity result is cancelled.

Let (σ1, σ2) = (τ, σ) be the worldsheet coordinates.5 The complex structure (α, β =

1, 2) on the worldsheet

Jα
β =

1√
g
gαγǫγβ (3.2)

5Note that the conjugate momentum is defined with σ2 = σ taken as the Euclidean time. We have chosen

to denote the boundary coordinate σ1 by τ so as to conform to the notation in (1.1) which is commonly

adopted.

– 8 –
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is given in terms of the induced metric gαβ . For the Lunin-Maldacena background, the

Hamilton-Jacobi equation takes the form

Gij(Pi − iBik∂1Y
k)(Pj − iBjl∂1Y

l) + GµνPµPν = Gij∂1Y
i∂1Y

j + Gµν∂1X
µ∂1X

ν (3.3)

where the momentum are

Pi = GijJ1
β∂βY j + iBik∂1Y

k, Pµ = GµνJ1
β∂βXν . (3.4)

The derivation of the HJ equation is given in the appendix. Notice the difference between

the undeformed case is that now appears the antisymmetric field Bij, which is not zero in

the deformed Lagrangian. Furthermore, because we use Euclidean world-sheet, it appears

as usual an i in front of the worldsheet coupling to the B-field. However, the terms including

the antisymmetric field will disappear when we substitute in the Hamilton-Jacobi equation

the conjugate momentum and we obtain

gijJ1
αJ1

β∂αY i∂βY j + J1
αJ1

β∂αXµ∂βXµ = gij∂1Y
i∂1Y

j + (∂1X
µ)2, (3.5)

where we have substituted (2.14) and using that Gµν = δµν/Y 2.

Now let us determine the boundary conditions for the string coordinates. Suppose that

the Wilson loop is parametrized by the values (xµ(σ1), y
i(σ1)) and choose the world-sheet

coordinates such that the boundary is located at σ2 = 0. Since the deformation in the dual

supergravity background does not appear in the Xµ directions, it is natural to impose the

same Dirichlet boundary condition for these coordinates as in the undeformed case:

Xµ(σ1, 0) = xµ(σ1). (3.6)

For the remaining 6 string coordinates Y i(σ1, σ2), one can expect the situation to be

more complicated since in the Lunin-Maldacena background, the deformations from the

standard AdS background occur in these directions. Due to the presence of the B-field,

the general mixed boundary condition takes the form

Jα
1 ∂αY k(σ1, 0) + iBk

l∂1Y
l(σ1, 0) = Λk

l ẏ
l(σ1) (3.7)

for some invertible matrix Λk
l. In addition, for a minimal surface to terminate at the

boundary of AdS5, we have the Dirichlet conditions Y i(σ1, 0) = 0, which means

∂1Y
i(σ1, 0) = 0. (3.8)

So the above Neumann boundary condition simplifies to

Jα
1 ∂αY k(σ1, 0) = Λk

l ẏ
l(σ1). (3.9)

Inserting the boundary conditions (3.6), (3.8) and (3.9) in the Hamilton-Jacobi equation

we find

ẋ2 − Λk
mΛl

ngkl ẏ
mẏn = (J1

α∂αXµ)2. (3.10)
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The term (J1
α∂αXµ)2 has to be zero near a smooth boundary, otherwise it costs infinite

area. Therefore, we arrived at the constraint

ẋ2 = gklΛ
k
mΛl

n ẏmẏn. (3.11)

In particular, the constraint derived from supergravity agrees with the constraint (1.2)

derived from field theory considerations of the condition if the matrix Λk
i satisfies the

condition

gklΛ
k
mΛl

n = δmn. (3.12)

This means that the boundary condition matrix Λk
m is the vielbein of the deformed metric

gkl. We remark that in [23], the D-brane boundary condition in the β-deformed theory was

obtained out using TsT transformation on the original undeformed boundary condition. It

was easy in that case since only angles was involved. In our case we still expect that one

can perform a TsT-transformation on the angles to derive the modified boundary condition

(3.9), (3.12), although it is less direct since the boundary condition is formulated in terms

of the Cartesian coordinates while TsT transformations operates on the angles.

3.3 Legendre transformation and boundary contribution

In the undeformed case, after performing a Legendre transformation the UV singularity of

the area functional cancels because of the constraint ẋ2 = ẏ2. For the deformed case, we

should have a similar situation in order for our result to be consistent. We will check this

now. As before, since the boundary condition (3.9) is of Neumann type, we consider the

same Legendre transform

Ã = A −
∮

dσ1PiY
i. (3.13)

Since the metric is singular at Y = 0, we introduce a regulator Y = ǫ and evaluate the

regularized action for Y ≥ ǫ. Let us first focus on the term that comes from Legendre

transformation Using the definition (3.4), we have, at Y = ǫ,

PiY
i = GijJ1

β∂βY jY i =
1

Y
Jα

1 ∂αY, (3.14)

where we have used the property (2.20) to get rid of the B-field term in the first equality;

and substituted Y i = Y θi, Gij = gij/Y 2 and used (2.13), (2.16) in the second equality.

To express Jα
1 ∂αY in terms of the boundary data, we note on substituting Y i = Y θi and

using again (2.13), (2.16) that,

gij(J
α
1 ∂αY i)(Jβ

1 ∂βY j) = (Jα
1 ∂aY )2 + Y 2Jα

1 Jβ
1 gij∂αθi∂βθj. (3.15)

In the limit ǫ → 0, the second term on the r.h.s. is zero. As for the l.h.s. , we use the

boundary condition (3.9) and the condition (3.12). Therefore we obtain

ẏ2 = (Jα
1 ∂aY )2. (3.16)

And the action (3.13) becomes

Ã = A −
∮

dσ1
|ẏ|
Y

= A − 1

ǫ

∮

dσ1|ẏ|, (3.17)
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where we are evaluating the regularized action for Y ≥ ǫ.

Now, as in the undeformed case, we expect the area of the minimal surface to have a

linear divergence proportional to the circumference of the boundary. Therefore

Ã =
1

ǫ

∮

dσ1(|ẋ| − |ẏ|) + finite part. (3.18)

This means that like the undeformed case, the linear divergence in the deformed case

cancels when the conditions (1.2) is satisfied.

It is worth noticing that this analysis of the absence of UV divergence in the vev of

the Wilson loop is valid for large λ, while the field theory analysis presented in the last

subsection is valid for small (up to second order in) λ. The fact that the UV divergence

cancels and a well-defined Wilson loop is obtained for both small and large λ leads us to

the conjecture that the Wilson loop (1.1), (1.2) is well-defined and has finite vev in the

N = 1 β-deformed SYM theory.

4. Near-1/4 BPS Wilson Loop

In the above, we have proposed that the D-brane configurations considered in [23] are

dual to the near-1/2 BPS operators where the circular loop has a trivial dependence in the

transverse space. Now we look at next non-trivial case where the loop involves a non-trivial

rotation in the transverse space as well,

W [C] =
1

N
TrP exp

[∫

dτ
(

iAµẋµ(τ) + |ẋ(τ)|ϕiθ
i(τ)

)

]

, (4.1)

where the loop is a circular path of radius R0 in space

x1 = R0 cos τ, x2 = R0 sin τ, (4.2)

and the coupling to the three scalars ϕ1, ϕ2, ϕ5 is parametrized by

θ1 = cos θ0, θ2 = sin θ0 cos τ, θ5 = sin θ0 sin τ, (4.3)

with an arbitrary fixed θ0. This operator in the undeformed theory is 1/2 BPS when

θ0 = 0 and 1/4 BPS in general [9]. In this section we use the AdS/CFT correspondence

to compute the value for the circular near BPS Wilson loop operator in the β-deformed

SYM.

We use the following form for the (Euclidean) AdS5 metric

ds2 = du2 + cosh2 u(dρ2 + sinh2 ρdψ2) + sinh2 u(dχ2 + sin2 χdφ2). (4.4)

For the deformed S̃5 (2.1a), we parametrize the µi coordinates via

µ1 = cos θ, µ2 = sin θ cos α, µ3 = sin θ sin α (4.5)

so that
∑

dµ2
i = dθ2 + sin2 θdα2. For Euclidean space, the worldsheet coupling to the

B-field get an extra factor of −i.
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To find the dual string configuration, we note that

θ1 + iθ4 = cos θ0,

θ2 + iθ5 = sin θ0e
iτ , (4.6)

θ3 + iθ6 = 0.

Comparing with the definition (2.5) for θi, and using (4.5), this means the dual string

configuration must satisfy φ2 = τ, and θ = θ0, φ1 = α = φ3 = 0 at the boundary.

Minimally, one wants to consider an ansatz involving only two angles φ2 and θ. However

due to the B-field, one can see easily that this is inconsistent. Let us therefore consider

a motion on R2 × S̃3 where R2 ⊂ AdS5 is parametrized by ψ and ρ, and the deformed

3-sphere is parametrized by the three angles θ, φ1, φ2 with α = φ3 = 0. The Polyakov

action for the Euclidean worldsheet (σ, τ) is

S =

√
λ

4π

∫

dσdτ
[

ρ′2 + ρ̇2 + sinh2 ρ(ψ′2 + ψ̇2) + θ′2 + θ̇2 + G cos2 θ(φ′
1
2 + φ̇2

1)

+G sin2 θ(φ′
2
2 + φ̇2

2) − 2iγ̂G sin2 θ cos2 θ(φ̇1φ2
′ − φ1

′φ̇2)
]

, (4.7)

where ′ (resp. ˙ ) denotes ∂σ (resp. ∂τ ) derivative. Due to the extra factor of −i in the B-

field coupling, a real configuration is possible only if one perform a Wick rotation φ1 → iφ1.

To match with the path specified by (4.2), (4.3), we look for solution of the form

u = 0, ρ = ρ(σ), ψ = τ (4.8)

θ = θ(σ), φ1 = φ1(σ), φ2 = τ. (4.9)

We remark that, compared to the solution [30] for the undeformed case, our ansatz has

an additional angle φ1 turned on. This is similar to the situation in the story of magnon.

There the string configuration dual to the magnon was found [31] to expand from a motion

on S2 for the undeformed case to a motion on a deformed 3-sphere when the β-deformation

is turned on. We also remark that the Wick rotation on φ1 is natural and is consistent with

a semi-classical interpretation of the AdS/CFT correspondence as a tunnelling phenomena.

The classical equations of motion for our ansatz (4.8), (4.9) takes the form

ρ′′ = cosh ρ sinh ρ, (4.10)

θ′′ =
1

2
∂θ(G sin2 θ) − 1

2
∂θ(G cos2 θ) φ′

1
2 + ∂θ(γ̂G sin2 θ cos2 θ)φ′

1 , (4.11)

0 = ∂τ (−G cos2 θφ̇1−γ̂G sin2 θ cos2 θφ2
′)+∂σ(−G cos2 θφ1

′+γ̂G sin2 θ cos2 θφ̇2) (4.12)

0 = ∂τ (G sin2 θφ̇2+γ̂G sin2 θ cos2 θφ1
′)+∂σ(−G sin2 θφ2

′−γ̂G sin2 θ cos2 θφ̇1). (4.13)

The equation (4.13) is satisfied trivially. Equation (4.12) gives

−G cos2 θφ1
′ + γ̂G sin2 θ cos2 θ = c1. (4.14)

For the surface to be closed, it must be possible to reach θ = 0 (north pole) or π (south pole),

and there the derivatives φ1
′, φ2

′ should be zero since no rotation is possible. Therefore

c1 = 0 and we have

φ1
′ = γ̂ sin2 θ. (4.15)
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Equation (4.11) then becomes

θ′2 = sin2 θ + c2, (4.16)

where c2 is a constant. Notice how the G dependence disappears in the above calculations.

Finally, we check also the Virasoro constraints, which reads

ρ′2 − sinh2 ρ + θ′2 − G sin2 θ − G cos2 θ φ′
1
2 = 0,

which implies

−ρ′2 + sinh2 ρ = θ′2 − sin2 θ. (4.17)

Again here notice that the G dependence disappears. To get a surface in correspondence

to a single circle, we set c2 = 0, and the final form of the equations of motion is

ρ′2 = sinh2 ρ, (4.18)

θ′2 = sin2 θ. (4.19)

This give the solution

sinh ρ =
1

sinhσ
, (4.20)

sin θ =
1

cosh(σ0 ± σ)
⇔ cos θ = tanh(σ0 ± σ) (4.21)

and

φ1 = γ̂
(

tanh(σ ± σ0) ∓ tanh(σ0)
)

. (4.22)

To see how our solution behaves, consider the limits

σ → 0 ⇒ ρ → ∞, and θ → θ0, φ1 → 0, (4.23)

σ → ∞ ⇒ ρ → 0, and θ → 0 or π. (4.24)

Here cos θ0 = tanh σ0. Depending on the sign in (4.21), the surface extends over the north

or south pole of S̃5.

Next we evaluate the action for this configuration. The bulk term is

Sbulk =

√
λ

2π

∫

dσdτ(sinh2 ρ + sin2 θ), (4.25)

from which we find

Sbulk =
√

λ(coth ρmax ∓ cos θ0). (4.26)

Here we have introduced a cutoff σmin to regulate the boundary contribution, and ρmax is

the corresponding cutoff on ρ. The coth ρmax term will cancel with boundary term coming

from the Legendre transformation as we have showed above. Hence, the final result is

Stot = ∓
√

λ cos θ0, (4.27)
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and

〈W 〉 ∼ exp
(

±
√

λ cos θ0

)

, (4.28)

where the sign is we chosen to minimize the action. This is the same vev as the 1/4 BPS

Wilson loop in the undeformed theory.

We note that in addition to this supergravity solution which involves 3 angles, one can

also construct a solution which involves only the two angles

θ = θ(σ), α = τ, (4.29)

together with (4.8). This solution is exactly the same as the undeformed one given in [30]

and gives rises to the same expectation value for the dual Wilson loop. It is straightforward

to work out the Wilson loop operator that is dual to it. It is defined by the loop

θ1 = cos θ0, θ2 = sin θ0 cos τ, θ3 = sin θ0 sin τ. (4.30)

Due to a lack of SO(6) invariance, the Wilson loop operator with the loop (4.30) is different

from the one with the loop (4.3). It is quite amazing that they have the same expectation

value.

To understand this result better. Let us first recall how the expectation value of

the 1/2 BPS circular Wilson loop was computed in gauge theory [33, 34]. The circular

loop is related to the straight line by a conformal transformation, one can therefore relate

the circular Wilson loop to the expectation value of the Wilson straight line, which is

one. The result is however non-trivial since under the conformal transformation, the gluon

propagator is modified by a singular total derivative which gives non-zero contribution only

when both ends of the propagator are located at the point which is conformally mapped to

the infinity. It was conjectured by [33] that diagrams with internal vertexes cancel precisely

and this is supported by a direct calculation at order g4N2. Assuming this is true, [34]

showed that the sum of all the non-interacting diagrams can be written as a Hermitian

matrix model

〈WR〉 =
〈 1

N
TrR

[

eM
]

〉

=
1

Z

∫

DM
1

N
TrR

[

eM
]

exp
(

− 2N

λ
TrM2

)

. (4.31)

This is exact to all order in λ and 1/N [34]. Explicit evaluation of the integral and hence the

Wilson loop expectation value has been performed for loops in various representations [33,

34, 9, 10, 12, 13]. This argument has also been applied to the 1/4 BPS fundamental Wilson

loop [30].

Now the β-deformed theory is exact conformal. So the above argument of conformal

anomaly applies. The only thing one need to be sure is how interacting diagrams contribute.

If they again sum up to zero, then there is no β-dependence left and one will get the same

result as in the undeformed case. Our result of getting the same expectation value for the

undeformed and the deformed Wilson loop operators suggests that the interacting diagrams

again cancel exactly, at least in the large ’t Hooft coupling limit. This is however not easy

to prove from perturbation theory since one needs to identify terms with dependence on

β2N at each order of 1/N . We believe a similar mechanism as in the undeformed case is
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at work. If this is the case, the exact expectation value of the circular Wilson loop in the

β-deformed SYM will be given by the same matrix model as in the undeformed N = 4

case. A better understanding of how this works in the undeformed case is necessary and

will be very interesting.

For the same reason, we conjecture that the expectation value of the near-1/4 BPS

Wilson loop in higher representations will also be unmodified. It will be interesting to

construct the D3-brane and D5-brane dual to these Wilson loops in higher representations

for the β-deformed theory and check this.

In this paper we have proposed a definition of a near BPS Wilson loop operator in the

β-deformed SYM theory. We conjectured that this operator has finite vev and provided

supporting evidences both from field theory and from supergravity. Thus this operator

is a natural candidate of a Wilson loop operator which admits a holographic description

in the β-deformed AdS/CFT correspondence. We showed that on the supergravity side,

the finiteness of the vev of the Wilson loop implies the same constraint on the loop as

is derived from the field theory analysis. That this is true relies on some remarkable

properties satisfied by the metric and the B-field of the Lunin-Maldacena background. It

will be interesting to be able to formulate and understand these symmetry properties in

terms of the dual field theory language. Its origin is likely to be nonperturbative. This

should provide us a better understanding of the mechanism responsible for the finiteness

of the vev of the Wilson loop.
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A. Wilson loop from U(N + 1) → U(N) × U(1) breaking

For real β-deformation, the bosonic part of the Lagrangian of the β-deformed SYM theory

is given by

L = Tr

(

1

4
FµνFµν +(DµΦ̄α)(DµΦα)−g2[Φα,Φβ]∗[Φ̄

α, Φ̄β ]∗+
g2

2
[Φα, Φ̄α][Φβ, Φ̄β ]

)

, (A.1)

where Φα (α = 1, 2, 3) are the scalar components of the N = 1 chiral superfield. The star

product for the fields is defined by

f ∗ g := eiπβ(Qf
1
Qg

2
−Qf

2
Qg

1
)fg, (A.2)

where fg is an ordinary product and (Qfield
1 , Qfield

2 ) are the U(1)1 × U(1)2 charges of the

fields (f or g). The values of the charges for all fields are given in (1.4). Clearly the star

product is non-trivial only when different chiral fields are multiplied, as explicit in (A.1).

Furthermore, we use the deformed commutator of fields,

[fα, gγ ]∗ := fα ∗ gγ − gγ ∗ fα = eiπβαγ fαgγ − e−iπβαγ gγfα , (A.3)
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where βαγ takes the values

βαγ = −βγα , β12 = −β13 = β23 := β . (A.4)

Next, let us break the gauge group U(N + 1) → U(N) × U(1) by turning non-zero

vacuum expectation values for the scalar fields

Φα =

(

0N×N 0

0 MΘα

)

, α = 1, 2, 3 . (A.5)

Here Θα lies on a 5-sphere, ΘαΘα = 1, corresponding to the direction of the symmetry

breaking. Decomposing the fields as

Âµ =

(

Aµ Wµ

W †
µ aµ

)

, Φ̂α =

(

Φα Wα

Yα MΘα

)

, (A.6)

we obtain the action in terms of Wα, Yα :

Ŝ =
1

4
F 2

µν +(DµΦα)(DµΦα)+
1

2
[Φα, Φα][Φγ , Φγ ] + [Φα, Φγ ]βαγ

[Φα, Φγ ]βαγ

+
(

(Dµ − iaµ)W †
α

)(

(Dµ + iaµ)Yα

)

+
(

(Dµ + iaµ)Y †
α

)(

(Dµ − iaµ)W α

)

+
1

4
f2

µν + (∂µMΘ†
α)(∂µMΘα)

−2Y †
α

(

ΦγΦαe−2iπβαγ −ΦαΦγ+
1

2
(Φα−MΘα)(Φγ−MΘγ)+M2ΘαΘγ(e2iπβαγ −1)

)

W †
γ

−2Yα

(

ΦγΦαe−2iπβαγ −ΦαΦγ+
1

2
(Φα−MΘα)(Φγ−MΘγ)+M2ΘαΘγ(e2iπβαγ −1)

)

Wγ

+Y †
α

(

(

2(Φκ−MΘκ)∗ ∗βαk
(Φκ−MΘκ)+[Φk,Φκ]

)

δαγ−2(Φγ−MΘγ) ∗βαγ
(Φα−MΘα)

+(Φα − MΘα)(Φγ − MΘγ)
)

Wγ

+Yα

(

(

2(Φκ−MΘk)∗ ∗βαk
(Φκ−MΘκ)+[Φκ,Φκ]

)

δαγ−2(Φγ−MΘγ) ∗βαγ
(Φα−MΘα)

+(Φα − MΘα)(Φγ − MΘγ)
)

W †
γ + · · · , (A.7)

where we have defined

(Φκ−MΘκ) ∗ ∗βακ
(Φκ−MΘκ) := ΦκΦκ+M2ΘκΘκ−ΦκMΘκe2iπβακ−MΘκΦκe−2iπβακ ,

(Φγ−MΘγ) ∗βαγ
(Φα−MΘα) := ΦγΦαe2iπβαγ +M2ΘγΘαe−2iπβαγ −MΘγΦα−ΦγMΘα.

In (A.7), · · · denotes terms of higher order (fourth) in the fields W,Y , and Tr over U(N)

is understood.

Next, we go to the real basis by introducing

Φ1 =
1√
2
(ϕ1 + iϕ4), Φ2 =

1√
2
(ϕ2 + iϕ5), Φ3 =

1√
2
(ϕ3 + iϕ6) , (A.8)

W1 =
1√
2
(w1 + iw4), W2 =

1√
2
(w2 + iw5), W3 =

1√
2
(w3 + iw6) , (A.9)
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and similarly for Yα and Θα. The terms Y †
α (· · · )W †

γ , Yα(· · · )Wγ , Yα(· · · )W †
γ and Y †

α (· · · )Wγ

become

6
∑

i=1

w†
i

[ 6
∑

j=1

Cjj − C0
ii

]

wi+
∑

ij=14,25,36

w†
i

[

2λij−C0
ij+2i sin 2πβ

∑

kl

siklϕkMθl

]

wj + c.c.

+
∑

ij 6=14,25,36
i6=j

w†
i

[

2Λij−C0
ij−2M2θiθj(cos 2πβ − 1)+2i

6
∑

k,l=1

Siklj sin 2πβ(ϕkϕl−M2θkθl)
]

wj

+ c.c., (A.10)

where we have defined

Cij := (ϕie
iπβ − Mθie

−iπβ)(ϕje
−iπβ − Mθje

iπβ), (A.11)

Λij := ϕiϕj − ϕjϕi cos 2πβ , (A.12)

λij := [ϕi, ϕj ] , (A.13)

and C0
ij = Cij(β = 0). The quantities sijk, Sijkm are equal to ±1 or zero, and their non-zero

elements are shown below:

sikl = 1 for ikl = 125, 163, 241, 236, 314, 352, and sikl = −silk ,

Siklj = 1 for iklj = 2451, 1245, 4512, 5124, 1643, 6431, 3164, 4316, 3562, 2356, 5623, 6235 .

We have written our result in this form, so to be clear as much as possible the separation

between the deformed and the undeformed part of the Lagrangian.

Following the derivation of [27], one can derive the form of the deformed Wilson loop.

What is relevant is the eigenvalues of the mass matrix (A.10). In the undeformed case,

the mass matrix has an eigenvalue which is 5-fold degenerated and a zero non-degenerate

eigenvalue. The supersymmetric Wilson loop (1.1), (1.2) is derived from the (infinitely)

massive quark probe. In the β-deformed case, the eigenvalues are generally deformed and

degeneracy is lifted. However it is clear that the large N Wilson loop will be the same as

in the undeformed case because there isn’t any multiplicative factor depending on N in

the mass matrix (A.10), therefore the classical Lagrangian is the same as the undeformed

one in the large N limit (1.7).

For finite N , one will need to keep track of all the dependence of β in the Lagrangian

(A.10). Due to the large amount of computational work, we were not able to work out the

explicit expressions of the eigenvalues. However for the cases we have checked (for example

by setting some of the φk and θk zero), it appears that there is always an eigenvalue which

is equal to the undeformed one. It is the phase factor which is associated with this quark

which gives rises to the Wilson loop (1.1), (1.2).

We remark that one may also utilize the star product (A.2) and use a star product

path ordering to define the Wilson loop operator. Unlike the Wilson loop in the ordinary

noncommutative geometry which is highly non-local [35], the closed Wilson loop operator is

immediately local and there is no need to employ an open Wilson line. When one expands

the exponent, one will get higher and higher powers of the scalar fields and each of them is
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accompanied with a phase factor which depends on the charge configuration of the scalars.

Since these phase factors becomes higher and higher power in β, in general one cannot drop

the β-dependence even in the large N limit. This operator is not what one obtains from the

probe analysis presented above. It is an interesting question whether this noncommutative

Wilson loop also admits a nice holographic interpretation, and how.

B. The deformed metric in the Cartesian coordinate system

For convenience we collect and present the metric in the coordinate system (2.5) expressed

in Y i coordinates. Defining

A1 = 1 + γ̂2Y −4(Y 22

+ Y 52

)(Y 32

+ Y 62

),

A2 = 1 + γ̂2Y −4(Y 12

+ Y 42

)(Y 32

+ Y 62

),

A3 = 1 + γ̂2Y −4(Y 12

+ Y 42

)(Y 22

+ Y 52

), (B.1)

the metric elements are:

G11 = Y −2 (Y 12

+ GY 42

A1)

Y 12 + Y 42
, G44 = Y −2 (Y 42

+ GY 12

A1)

Y 12 + Y 42
,

G22 = Y −2 (Y 22

+ GY 52

A2)

Y 22 + Y 52
, G55 = Y −2 (Y 52

+ GY 22

A2)

Y 22 + Y 52
,

G33 = Y −2 (Y 32

+ GY 62

A3)

Y 32 + Y 62
, G44 = Y −2 (Y 62

+ GY 32

A1)

Y 32 + Y 62
, (B.2)

G12 = 2Y −6γ̂2G(Y 32

+ Y 62

)Y 4Y 5, G13 = 2Y −6γ̂2G(Y 22

+ Y 52

)Y 4Y 6,

G15 = −2Y −6γ̂2G(Y 32

+ Y 62

)Y 2Y 4, G16 = −2Y −6γ̂2G(Y 22

+ Y 52

)Y 4Y 3,

G23 = 2Y −6γ̂2G(Y 12

+ Y 42

)Y 5Y 6, G24 = −2Y −6γ̂2G(Y 32

+ Y 62

)Y 1Y 5,

G26 = −2Y −6γ̂2G(Y 12

+ Y 42

)Y 3Y 5, G34 = −2Y −6γ̂2G(Y 22

+ Y 52

)Y 1Y 6,

G35 = −2Y −6γ̂2G(Y 12

+ Y 42

)Y 2Y 6, G45 = 2Y −6γ̂2G(Y 32

+ Y 62

)Y 1Y 2,

G46 = 2Y −6γ̂2G(Y 22

+ Y 52

)Y 1Y 3, G56 = 2Y −6γ̂2G(Y 12

+ Y 42

)Y 2Y 3, (B.3)

G14 = 2Y −2 Y 1Y 4(1 − GA1)

Y 12 + Y 42
,

G25 = 2Y −2 Y 2Y 5(1 − GA2)

Y 22 + Y 52
, (B.4)

G36 = 2Y −2 Y 3Y 6(1 − GA3)

Y 32 + Y 62
.

Substituting from (2.5) the coordinates we express the metric in angles, the diagonal terms

are

G11 =
1

Y 2
(cos2 φ1 + G sin2 φ1M1), G44 =

1

Y 2
(sin2 φ1 + G cos2 φ1M1),

G22 =
1

Y 2
(cos2 φ2 + G sin2 φ2M2), G55 =

1

Y 2
(sin2 φ2 + G cos2 φ2M2),

G33 =
1

Y 2
(cos2 φ3 + G sin2 φ3M3), G66 =

1

Y 2
(sin2 φ3 + G cos2 φ3M3) . (B.5)
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The non-diagonal elements are

G12 =
1

Y 2
γ̂2Gµ1µ2µ

2
3 sin φ1 sin φ2, G13 =

1

Y 2
γ̂2Gµ1µ

2
2µ3 sinφ1 sin φ3,

G15 = − 1

Y 2
γ̂2Gµ1µ2µ

2
3 sin φ1 cos φ2, G16 = − 1

Y 2
γ̂2Gµ1µ

2
2µ3 sinφ1 cos φ3,

G23 =
1

Y 2
γ̂2Gµ2

1µ2µ3 sin φ2 sin φ3, G24 = − 1

Y 2
γ̂2Gµ1µ2µ

2
3 cos φ1 sin φ2,

G26 = − 1

Y 2
γ̂2Gµ2

1µ2µ3 sin φ2 cos φ3, G34 = − 1

Y 2
γ̂2Gµ1µ

2
2µ3 cos φ1 sin φ3,

G35 = − 1

Y 2
γ̂2Gµ2

1µ2µ3 cos φ2 sinφ3, G45 =
1

Y 2
γ̂2Gµ1µ2µ

2
3 cos φ1 cos φ2,

G46 =
1

Y 2
γ̂2Gµ1µ

2
2µ3 cos φ1 cos φ3, G56 =

1

Y 2
γ̂2Gµ2

1µ2µ3 cos φ2 cos φ3, (B.6)

and

G14 =
1

2Y 2
sin 2φ1(1−GM1), G25 =

1

2Y 2
sin 2φ2(1−GM2), G36 =

1

2Y 2
sin 2φ3(1−GM3).

(B.7)

C. Derivation of the Hamilton-Jacobi equation

In this appendix we shortly derive the Hamilton-Jacobi (HJ) equation (3.3). Consider the

action for the string

S =

∫

d2σ
(
√

det g − iBIJ∂1X
I∂2X

J
)

(C.1)

where gαβ := GIJ∂αXI∂βXJ , α, β = 1, 2. The conjugate momentum is

PI =
δS

δ(∂2XI)
=

1√
g
GIJ(g11∂2X

J − g12∂1X
J ) + iBIJ∂1X

J := PI + iBIJ∂1X
J , (C.2)

where we have introduced PI as defined above. This turns out to be a convenient variable

for expressing the HJ equation. The Hamiltonian is

H = PI∂2X
I − L = PI∂2X

I −√
g. (C.3)

Eliminate ∂2X
I in terms of PI and note that PI∂1X

I = 0, we obtain

H =

√
g

g11
(GIJPIPJ − g11). (C.4)

And we obtain the HJ equation H = 0,

GIJPIPJ = GIJ∂1X
I∂1X

J . (C.5)

This is the form of HJ equation we used in the main text of the paper.
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Figure 1: 1-loop contribution to scalar propagator

D. Cancellation of UV divergences up to order (g2N)2

We first demonstrate that that the scalar propagator and the gauge boson propagator in

the Feynman gauge remains equal up to first order in g2N . The simplest way to show

this is to use superspace Feynman graphs. In terms of superfields, the Lagrangian for the

β-deformed SYM theory is

L =

∫

d2θd2θ Tr(e−gV Φie
gV Φi) +

1

2g2

∫

d2θ TrW αWα + c.c. (D.1)

+ih

∫

d2θTr(eiπβΦ1Φ2Φ3−e−iπβΦ1Φ3Φ2)+ih∗

∫

d2θTr(eiπβΦ1Φ2Φ3−e−iπβΦ1Φ3Φ2).

Using fabc := −iTr(Ta[Tb, Tc]), dabc := Tr(Ta{Tb, Tc}), the superpotential can be written

as

−h(fabc cos πβ + dabc sinπβ)

∫

d2θ Φa
1Φ

b
2Φ

c
3 + c.c. . (D.2)

The relation between h and g is obtained from the requirement of superconformal invari-

ance, which gives up to two-loop order [36, 37],

|h|2
(

C2 cos2 πβ + D2 sin2 πβ
)

= Ng2. (D.3)

Here fabcfa′bc = δaa′C2, dabcda′bc = δaa′D2 and Tr(TaTa′) = δaa′/2. Now the 1-loop correc-

tion to the scalar propagator is contained in the diagrams in figure 1. It is obvious that the

graph (b) is independent of β. For the graph (a), it has a interaction vertex proportional

to |h|2(fabcfa′bc cos2 πβ + dabcda′bc sin2 πβ). Using the superconformal invariance condition

(D.3), this is equal to g2Nδaa′ and is independent of β. Thus the one loop contribution to

the scalar propagator is independent of β. It is obvious that the one loop contribution to

the gauge boson propagator is also independent of β. Using the result of [33], we conclude

that the scalar propagator and the gauge boson propagator remains equal up to first order

in g2N .

Using this result, it is easy to see that the Wilson loop operator (1.1) is free from

UV divergence up to order (g2N)2 if the constraint (1.2) is satisfied. The proof is a

slight adaption of the computation of [29]. At leading and next-to-leading orders, we have

the Feynman diagrams given in figure 2. The linear divergences in diagrams (a-g) got

cancelled out immediately due to the equality of the 1-loop corrected scalar and gauge

boson propagators. As for the diagrams (h) and (i), we have

(h) + (i) = 2(g2N)2
∫

d4x

∮

ds1ds2ds3θc(s1, s2, s3) ·

·(Dxx1
∂λDxx2

− ∂λDxx1
Dxx2

)Dxx3
ẋλ

3 · (ẋµ
1 ẋν

2δµν − ẏi
1ẏ

j
2δij). (D.4)
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Figure 2: Feynman diagrams of leading and next-to-leading orders

The contribution to (D.4) from the region s1 ∼ s2 ∼ s3 is linear divergent for a generic

loop,

(h) + (i) ∼
∮

ds1
1

ǫ
(ẋ2

1 − ẏ2
1 + ǫ). (D.5)

However when the constraint (1.2) is satisfied, the contribution is finite. Thus we conclude

that the Wilson loop operator (1.1) has a expectation value that is free from UV divergence

up to order (g2N)2 when the constraint is satisfied.

We also remark that, due to the equality of the propagators, the Wilson loop operator

with the constraint [29]

ẏi = M i
µẋµ, M i

µM i
ν = δµν (D.6)

has expectation value 1 up to order (g2N)2. We conjecture that this Wilson loop has an

exact expectation value 1 just as in the N = 4 theory.
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